The role of genetic factors in the pathogenesis of multifocal atherosclerosis, influence on prognosis and treatment results
Abstract
The aim of the study is to study the role of genetic markers involved in the regulation of pathways associated with inflammation, endothelial function, lipid metabolism, hemostasis in the pathogenesis of multifocal atherosclerosis, their impact on the prognosis and treatment outcomes.
Material and methods. The study is a retrospective analysis of data (genetic, clinical, instrumental and laboratory parameters) of 96 patients with stable coronary artery disease, including 10 patients with multifocal atherosclerosis, who underwent myocardial revascularization procedures, as well as interventions on other vascular regions, who were monitored for 6.4±0.54 years. Genetic testing for carriage of 68 SNPs of 37 candidate genes involved in the regulation of various pathophysiological pathways was performed: CRP (rs3093059, rs3093062, rs1417938, rs1800947, rs1130864), TNF-SF (rs385064), LTα (rs1800797), Kalirin (rs7620580), p22 (phox) (rs4673), Stromelysin-1 (rs3025058), P-selectin (rs6136, rs3093030), LTA4H (rs2660899), TLR4 (rs1554973), CCRL2 (rs6808835, rs6971599), CCR2 (rs2227010), CCR5 (rs746492, rs1799988, rs2097285); LPA (rs1853021), APOC3 (rs2854116; rs4520; rs5128), LPL (rs268; rs285; rs328; rs1801177; rs2083637; rs10096633, rs1800590), PON1 (rs854560; rs662), ABCA1 (rs 2740483; rs1800977, rs2230806), PCSK9 (rs505151), APOA5 (rs964184), LRP1 (rs5174), ANGPTL3 (rs10889353), TRIB1 (rs29540029), XKR6-AMAC1L2 (rs78194412), APOE (rs405509; rs429358+rs7412), OLR1 (rs1050283); ACE (rs4341), AGT (rs5050, rs699, rs4762), ADRB1 (rs1801253, rs1801252), EDN1 (rs10478694, rs5370), ENDRA (rs1801708), p22 (phox) (rs4673); MTHFR (rs1801133), SERPINE-1 (rs2227631), F2 (rs1799663), F5 (rs6025), F2R (rs6313), FGB (rs1800787, rs2227401, rs2042642, rs5918), vWF (rs2239159, rs2239162, rs 7969672, rs2270152).
Results. The relationship with the risk of multifocal atherosclerosis was shown by the carriage of the AG genotype of SNP LRP1 rs5174 (the gene of protein-1, similar to the low-density lipoprotein receptor). The carriage of this genotype increases the risk of developing multifocal atherosclerosis by 5.3 times (OR=5.3; 95%CI: 1,06- 26,4; χ2=5,25 p=0,05). Univariate analysis revealed associations with the risk of developing MACE with carriage of the following genetic markers: carriage of the CT genotype LPL rs10096633 (OR=5.7; 95% CI: 1.7-18.8; 2χ =15.7; p=0.0001); the AA genotype ENDRA rs1801708 (OR=5.9; 95%CI: 1.7-131.9; χ2=9.66; p=0.008); the GG genotype MTHFR rs1801133 (OR=2.65; 95%CI: 1.1-7.6; χ2=6.34; p=0.04); genotype GG CCR5 rs1799988 (OR=2.8; 95%CI:1.1-7.55; χ2=5.12; p=0.07); CC genotype CCR5 rs746492 (OR=3.3; 95%CI:1.28-9.39; χ2=6.0; p=0.03).
Conclusion. The results of the study may potentially serve as a basis for developing new therapeutic approaches to the prevention and treatment of atherosclerosis, and the established genetic risk associations may be used to assess the prognosis in patients with atherosclerotic cardiovascular diseases.
References
Бокерия Л.А., Бокерия О.Л., Жугинисов Д.Ш., Коасари А.К., Юркулиева Г.А., Раживина А.В. Поэтапное или одномоментное хирургическое лечение поражения брахиоцефальных и коронарных сосудов. Сердечно-сосудистые заболевания. Бюллетень НЦССХ им.А.Н.Бакулева РАМН. 2021; 22 (4): 452–458. DOI: 10.24022/1810-0694-2021-22-4-452-458
Керен М.А., Шейкина Н.А., Сигаев И.Ю., Мерзляков В.Ю., Алшибая М.Д., Аракелян В.С. и др. Исходы коронарной и каротидной реваскуляризации в зависимости от реализованной хирургической тактики: опыт одного центра. Грудная и сердечно-сосудистая хирургия. 2023; 65 (6): 713–721. DOI: 10.24022/0236-2791-2023-65-6-713-721
Шляхто Е.В. Мультифокальный атеросклероз в реальной практике кардиолога: что знаем и где должны сконцентрировать усилия. Российский кардиологический журнал. 2024; 29 (4): 7–9. DOI: 10.15829/1560-4071-2024-5845
Арутюнов Г.П., Тарловская Е.И., Арутюнов А.Г., Батлук Т.И., Козиолова Н.А., Чесникова А.И. и др. Пациенты с необструктивной ИБС и мультифокальным атеросклерозом. Субанализ регистра реальной клинической практики КАММА (Клинический регистр по изучению популяции пАциентов с выявленным МультифокальныМ Атеросклерозом на территории Российской Федерации и стран Евразии). Кардиология. 2024; 64 (8): 13–23. DOI: 10.18087/cardio.2024.8.n2683
Ибрагимов Р.М., Иошина В.И., Амбатьелло С.Г., Бузиашвили Ю.И. Результаты прямой реваскуляризации миокарда (аортокоронарного шунтирования/чрескожного коронарного вмешательства) у больных с мультифокальным атеросклерозом при остром коронарном синдроме без подъема сегмента ST. Сердечно-сосудистые заболевания. Бюллетень НЦССХ им. А.Н. Бакулева РАМН. 2019; 20 (1): 46–53. DOI: 10.24022/1810-0694-2019-20-1-46-53
Libby P. Inflammation and the pathogenesis of atherosclerosis. Vascul. Pharmacol. 2024; 154: 107255. DOI: 10.1016/j.vph.2023.107255
Erol Ç. Atherosclerosis Reviewed. Anatol. J. Cardiol. 2024; 28 (8): 374. DOI: 10.14744
Perrotta I. Atherosclerosis: From molecular biology to therapeutic perspective 2.0. Int. J. Mol. Sci. 2022; 23 (23): 15158. DOI: 10.3390/ijms232315158
Mocci G., Sukhavasi K., Örd T., Bankier S., Singha P., Arasu U.T. et al. Single-cell gene-regulatory networks of advanced symptomatic atherosclerosis. Circ. Res. 2024; 134 (11): 1405–1423. DOI: 10.1161/CIRCRESAHA.123.323184
Шейкина Н.А., Керен М.А. Проблема выбора оптимальной хирургической тактики лечения больных с критическим поражением коронарных и каротидных артерий. Грудная и сердечно-сосудистая хирургия. 2022; 64 (3): 252–258. DOI: 10.24022/0236-27912022-64-3-252-258
Borovac J.A. The molecular mechanisms and therapeutic targets of atherosclerosis: from basic research to interventional cardiology. Int. J. Mol. Sci. 2024; 25 (9): 4936. DOI: 10.3390/ijms25094936
McCarthy J.J., Parker A., Salem R., Moliterno D.J., Wang Q., Plow E.F. et al, GeneQuest Investigators. Large scale association analysis for identification of genes underlying premature coronary heart disease: cumulative perspective from analysis of 111 candidate genes. J. Med. Genet. 2004; 41 (5): 334–341. DOI: 10.1136/jmg.2003.016584
Teslovich T.M., Musunuru K., Smith A.V., Edmondson A.C., Stylianou I.M., Koseki M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010; 466 (7307): 707–713. DOI: 10.1038/nature09270
Xian X., Ding Y., Dieckmann M., Zhou L., Plattner F., Liu M. et al. LRP1 integrates murine macrophage cholesterol homeostasis and inflammatory responses in atherosclerosis. Elife. 2017; 16 (6): e29292. DOI: 10.7554/eLife.29292
Chen J., Su Y., Pi S., Hu B., Mao L. The dual role of low-density lipoprotein receptor-related protein 1 in atherosclerosis. Front. Cardiovasc. Med. 2021; 8 (28): 682389. DOI: 10.3389/fcvm.2021.682389
Herz J., Hamann U., Rogne S., Myklebost O., Gausepohl H., Stanley K.K. Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO. J. 1988; 7 (13): 4119–4127. DOI: 10.1002/j.1460-2075.1988.tb03306.x
Moestrup S.K., Gliemann J. Purification of the rat hepatic alpha 2-macroglobulin receptor as an approximately 440-kDa single chain protein. J. Biol. Chem. 1989; 264 (26): 15574–15577.
Ashcom J.D., Tiller S.E., Dickerson K., Cravens J.L., Argraves W.S., Strickla D.K. The human alpha 2-macroglobulin receptor: identification of a 420-kD cell surface glycoprotein specific for the activated conformation of alpha 2-macroglobulin. J. Cell. Biol. 1990; 110: 1041–1048. DOI: 10.1083/jcb.110.4.1041
Beisiegel U., Weber W., Ihrke G., Herz J., Stanley K.K. The LDL-receptor-related protein, LRP, is an apolipoprotein E-binding protein. Nature. 1989; 341 (6238): 162–164. DOI: 10.1038/341162a0
Franchini M., Montagnana M. Low-density lipoprotein receptor-related protein 1: new functions for an old molecule. Clin. Chem. Lab. Med. 2011; 49 (6): 967–970. DOI: 10.1515/CCLM.2011.154
Garcia E., Camps-Renom P., Puig N., Fernández-Leon A., Aguilera-Simón A., Benitez-Amaro A. et al. Soluble low-density lipoprotein receptor-related protein 1 as a surrogate marker of carotid plaque inflammation assessed by 18F-FDG PET in patients with a recent ischemic stroke. J. Transl. Med. 2023; 21 (1): 131. DOI: 10.1186/s12967-022-03867-w
Bown M.J., Jones G.T., Harrison S.C., Wright B.J., Bumpstead S., Baas A.F. et al. Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein receptor-related protein 1. Am. J. Hum. Genet. 2011; 89 (5): 619–627. DOI: 10.1016/j.ajhg.2011.10.002
Chistiakov D.A., Orekhov A.N., Bobryshev Y.V. Vascular smooth muscle cell in atherosclerosis. Acta. Physiol. (Oxf). 2015; 214 (1): 33–50. DOI: 10.1111/apha.12466
Bennett M.R., Sinha S., Owens G.K. Vascular smooth muscle cells in atherosclerosis. Circ. Res. 2016; 118 (4): 692–702. DOI: 10.1161/CIRCRESAHA.115.306361
Mao H., Lockyer P., Townley-Tilson W.H.D., Xie L., Pi X. LRP1 regulates retinal angiogenesis by inhibiting PARP-1 activity and endothelial cell proliferation. Arterioscler. Thromb. Vasc. Biol. 2016; 36: 350–360. DOI: 10.1161/ATVBAHA.115.306713
Hu H., Garcia-Barrio M., Jiang Z.S., Chen Y.E., Chang L. Roles of perivascular adipose tissue in hypertension and atherosclerosis. Antioxidants Redox Signal. 2020; 34: 736–749. DOI: 10.1089/ars.2020.8103
Silvestre-Roig C., Braster Q., Ortega-Gomez A., Soehnlein O. Neutrophils as regulators of cardiovascular inflammation. Nat. Rev. Cardiol. 2020; 17: 327–340. DOI: 10.1038/s41569-019-0326-7
Liberale L., Bertolotto M., Minetti S., Contini P., Verzola D., Ameri P. et al. Recombinant tissue plasminogen activator (r-tPA) induces in-vitro human neutrophil migration via low density lipoprotein receptor-related protein 1 (LRP-1). Int. J. Mol. Sci. 2020; 21: 7014. DOI: 10.3390/ijms21197014
Panezai J., Bergdahl E., Sundqvist K.G. T-cell regulation through a basic suppressive mechanism targeting low-density lipoprotein receptor- related protein 1. Immunology. 2017; 152: 308–327. DOI: 10.1111/imm.12770
Камолов И.Х., Семитко С.П., Чернышева И.Е., Церетели Н.В., Сандодзе Т.С., Азаров А.В. Анатомия коронарных артерий и локализация коронарного атеросклероза у сибсов мужского пола с ишемической болезнью сердца. Грудная и сердечно-сосудистая хирургия. 2023; 65 (2): 214–222. DOI: 10.24022/0236-2791-2023-65-2-214-222
Bornachea O., Benitez-Amaro A., Vea A., Nasarre L., de Gonzalo-Calvo D., Escola-Gil J.C. et al. Immunization with the Gly (1127) -Cys (1140) amino acid sequence of the LRP1 receptor reduces atherosclerosis in rabbits. Molecular, immunohistochemical and nuclear imaging studies. Theranostics. 2020; 10: 3263–3280. DOI: 10.7150/thno.37305
Toldo S., Austin D., Mauro A.G., Mezzaroma E., Van Tassell B.W., Marchetti C. et al. Low-density lipoprotein receptor-related protein-1 is a therapeutic target in acute myocardial infarction. JACC Basic. Transl. Sc i. 2017; 2: 561–574. DOI: 10.1016/j.jacbts.2017.05.007
Potere N., Del Buono M.G., Niccoli G., Crea F., Toldo S., Abbate A. Developing LRP1 agonists into a therapeutic strategy in acute myocardial infarction. Int. J. Mol. Sci. 2019; 20: 544. DOI: 10.3390/ijms20030544